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A heuristic method to sort principal components is analysed. The obtained arrangements
are property dependent and it is demonstrated how the procedure is equivalent to the called
Most Predictive Variable Method. As an application of the new algorithm, a Quantitative
Structure–Property Relationships (QSPR) study is performed over the set of the 18 structural
isomers of the octane molecule. The original molecular descriptors are obtained from a quan-
tum similarity matrix related to the molecular family. The analysis is based on the use of linear
models where distinct sets of principal components act as optimal descriptors for 6 physico-
chemical molecular properties. The proposed algorithm allows to determine sequences of the
first Principal Components which are identified as forming the optimal descriptors set for each
of the 6 studied properties. The benefits of the new approach are revealed when comparing
the obtained results with classical ones arising from a standard principal component analysis
study.

KEY WORDS: QSAR, sorting principal components, most predictive variable method, cross-
validation, quantum similarity

1. Introduction

An important field of investigation in contemporaneous chemistry is based on the
prediction of molecular properties, either physicochemical or biological. Within this
paradigm, the QSAR/QSPR (Quantitative Structure–Activity or Structure–Property Re-
lationships) fields are one of the most known, see for example the reviews [1–7] and
the references cited there. Many times, the related methods are based on the use of
molecular descriptors and it is very frequent to manipulate the parameters using linear
techniques as Multilinear Regression [8], Principal Component Analysis (PCA) [9–11],
Partial Least Squares (PLS) [12] or the computation of the so-calledq(2) coefficient [13].

Here is presented a simple and useful algorithm to sort the principal components
(PCs) in a property dependent fashion. In the first part of this work, it is demonstrated
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how the Most Predictive Variable Method (MPVM) of Cuadras and co-workers [14,15]
degenerates in a simple and heuristic criterion: to sort the PCs according to the respective
squared correlation coefficient with respect to the molecular properties vectors. In this
way, it will be shown how PCs that are not related to a maximum reservoir of variance
can be, instead, well conditioned to enter in a linear scheme capable to grasp a notable
amount of “property variance”. Of course, if different properties or molecular families
are studied, the sorting of the PCs is different too.

As an application example, the family of 18 structural isomers of the octane mole-
cule will be studied and a set of 6 physicochemical properties will be correlated. The
theoretical molecular parameters come from the manipulation of a Molecular Quantum
Similarity Matrix (MQSM, see [16–21] and appendix). The final linear equations de-
pend on different sets of PCs. Comparisons will be done between the classical PCA
results and the ones coming from the proposed algorithm.

2. The heuristic method

In a previous article [22], a methodology for the prediction of molecular properties
was described. The molecular descriptors, previously obtained from a molecular quan-
tum similarity matrix, were pre-processed with the PCA technique [9–11]. The final
treatment was carried out using neural networks [23].

In the present work, the same molecular quantum similarity matrix is used. The
goal is to manipulate the PCs in order to enhance its performance in QSPR studies. At
the end, it will be shown how using only linear methods, the results are substantially
improved respect to the original article. The new proposed algorithm establishes a new
PCs selection criterion. The PCs sorting is oriented to the molecular property under
study.

It is not our intention to affirm that a linear method will be always better than
another one based on neural networks. Instead, we promote the idea that a method such
as the PCA, which has nothing to do with the molecular properties, can be oriented to
them in a similar way as it is done when using the PLS technique. That is, PCs related
to a small or intermediate amount of data variance are best candidates to correlate (and
predict) molecular properties and enter into linear QSPR models.

Given a set ofn molecules andm descriptors forming ann×m matrixA, the related
m PCs (loadings) generates new molecular coordinates (scores). Within the classical and
standard approach in order to reduce the problem dimension,p < m first components
attached to thep biggest eigenvalues are selected. Then, the molecular family is under-
stood to be described for a newn×p matrixC. Usually, this new data matrix enter into
the QSPR treatment and the same coordinates are used to classify different molecular
properties of a given molecular family. Thus, the selection of molecular descriptors is
performed irrespective to the properties.

Here, it is proposed to use a distinct matrixC for every molecular property vector.
The matrixC will contain, for every property, a different set of PCs. It follows the
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algorithm that allows, given ann-dimensional molecular property vectory, the selection
of the optimal and property-oriented principal descriptors:

1. Define the originaln×m descriptors matrixA.

2. Obtain them PCs:X = (x1, x2, . . . , xm).

3. Give a molecular property vectory.

4. Compute the squares of them linear correlation coefficients between every prin-
cipal component,xi, and the vectory: r2

i , i = 1,2, . . . , m.

5. Sort the PCs according to the decreasing value of ther2
i coefficients.

6. Give the number of PCs to be considered:p.

7. Choose the firstp vectors obtained in step 5.

In this algorithm, the selected descriptors are orthogonal because they are PCs but
this is not compulsory because the method can be applied to any kind of column vector
descriptors. In the first case, which appears to be the most common choice, the computed
squared correlation coefficients

{
r2
i

}
are additive. That is, ifr2

i andr2
j are coefficients

associated to two different and orthogonal vectors(i �= j), a linear regression model
involving both vectors will give a squared correlation coefficient equal toR2 = r2

i + r2
j .

This is a general result that can be extended to any set of more than two original orthog-
onal column descriptors.

3. Equivalence with Cuadras’ method

The sorting method proposed here, despite to be initially derived heuristically, has
a solid mathematical foundation. In this section will be demonstrated how the pre-
sented method always generates the same eigenvectors sorting as the method opposed
by Cuadras and co-workers [14,15]. The original formulation of Cuadras defines the fol-
lowing predictavility coefficientwithin the Most Predictive Variable Method (MPVM)
approach:

χ2(y, xi) = (yTxi )
2∑

j (yj − y)2λj

. (1)

Here, the descriptors column vector,xi = (xi1, xi2, . . .)
T is a transformed prin-

cipal component normalised and with a null mean value. The column vectory =
(y1, y2, . . . , yn)

T contains the molecular properties. The scalary is the mean value of
the y vector components and theλj terms are the eigenvalues attached to the original
eigenvectors.

If the scale and origin of they vector are changed, the new obtained one,y ′, is
related to the former by a simple expression:

y ′ = a
(
y − y1

)
,
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where1 represents the column vector having all the elements equal to the unity and the
parametera stands for a normalisation constant. As the mean value of the elements of
y ′ vector is null,y ′ = 0, the new expression forχ2 in terms of the vectory ′ would be

χ2(y ′, xi ) = (y ′Txi)
2∑

j (y
′
j )

2λj

. (2)

This allows to demonstrate that the parameterχ2 is invariant to the change of scale
due to the multiplication by an arbitrary constanta:

χ2(y ′, xi

) = (a(y − y 1)Txi)
2∑

j (ayj − ay)2λj

= ((y − y 1)Txi)
2∑

j (yj − y)2λj

= χ2

(
y ′

a
, xi

)
.

Also, from the previous expression,

χ2
(
y ′, xi

) = χ2

(
y ′

a
, xi

)
= (yTxi − y1Txi)

2∑
j (yj − y)2λj

and due to the fact that the elements of the vectorxi have null mean value, 0=∑j xij ,
the scalar product1Txi is zero:

1Txi = (1 1 . . . 1)




xi1

xi2
...

xin


 =

∑
j

xij = 0.

Then,

χ2(y ′, xi

) = χ2

(
y ′

a
, xi

)
= (yTxi)

2∑
j (yj − y)2λj

and

χ2
(
y ′, xi

) = χ2

(
y ′

a
, xi

)
= χ2(y, xi).

In consequence, the predictavility coefficientχ2 is invariant to both, the shift and scaling
of the vectory.

If the constanta is chosen to be a normalisation factor, one can interpret the for-
mula (2) as acanonical formto express the predictavility coefficient. Its denominator is
a constant related to every molecular family and also to every property vector. In other
words, given a molecular family and a property vector, the coefficientχ2 is proportional
to the square of the scalar producty ′Txj . At the same time, and due to the fact that the
vectorsy ′ andxi are normalised, this scalar product coincides with the linear correla-
tion coefficientri between the respective elements. So, finally one is able to write the
following relations:

χ2(y, xi ) = χ2(y ′, xi

) ∝ (y ′Txi

)2 = r2
i ,
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and conclude that Cuadras’ coefficient is merely proportional to the correlation coeffi-
cient r2

i . The PCs sorting imposed by the use of theχ2(y, xi) term is exactly the same
as the obtained according to the values ofr2

i . Our proposal is to use this squared linear
correlation coefficient as a parameter to measure the predictive power of a descriptor.
Some of the advantages of this procedure are:

• It gives the same descriptor ordering than the coefficientχ2.

• It is more intuitive and directly interpretable.

• It is easier to compute thanχ2 because there is no need of diagonalising any
matrix. It is not necessary to know any eigenvalue.

• It is not forced to use it over a set of descriptors having the property to be or-
thogonal or to be eigenvectors of a matrix.

• If the descriptors are orthogonal (independently if they come from a process of
diagonalisation or not), the numerical valuesr2

i are additive. The sum coincides
with the squared coefficientR2 that will eventually be obtained if a multilinear
regression computation is performed.

4. Results and discusion

The PCs sorting method has been tested in the study of the 18 octane structural
isomers. Six physicochemical properties have been considered: Gibbs free energy of
formation, enthalpy of formation, standard entropy, normal boiling point, density and
refraction index. The molecules are identified in table 1, together with the experimental
data properties [24,25].

Figures 1 and 2 present the collection of representations showing as the indepen-
dent variable the number of PCs employed in the linear correlation study. The dependent
parameters are:R2 (squared correlation coefficient coming from a multilinear fitting),
r2
cv (squared correlation coefficient),sn,cv (relative standard deviation) andfcv (statistical

significance according to the Fisher test [26]). All these parameters, except the first one,
refer to cross-validation calculations.

Figure 1 presents the graphs obtained when the PCs addition is performed follow-
ing the classical criteria of retention of maximal data variance. This classical ordering
defines what we call thecanonical order(CO) for the PCs. Figure 2 reflects the same
kind of results but this time the PCs are entered following the sequence established by the
proposed algorithm. As this new PCs sorting is property dependent, we call it aspecific
order (SO). To denote a SO, the sequence of vectors is indicated using the numbering
they have in the CO.

The statistical parametersn,cv has been defined for each property as the standard
deviation for a given number of PCs (this applies for both the CO and the SO) divided
by the maximum value obtained relative to the same property and during the cross-
validation process. As the definition ofsn,cv is relative, this allows to perform rapid
visual inspections along the graphs: the parameter always achieves its maximum value
in one of the graphs in figure 1 and never in figure 2.
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Table 1
Experimental data for the 18 structural octane isomers. The symbols, from left to right, are: free energy
of formation, enthalpy of formation, standard entropy, normal boiling point, density at 20◦C and refractive

index at 20◦C. The three first data values come from [24] and the last three ones were taken from [25].

�G◦f �H ◦f S◦ Tb ρ n

Molecule (Kcal/mol) (Kcal/mol) (Kcal/mol K) (◦C) (g/ml)

1 n-octane 4.14 −49.82 110.82 126 0.703 1.3974
2 2,2,3,3-tetramethylbutane 4.88 −53.99 94.34 106 0.824 1.4695
3 2-methyl-3-etylpentane 5.08 −50.48 105.43 116 0.719 1.4040
4 3-methyl-3-etylpentane 4.76 −51.38 103.48 118 0.727 1.4078
5 2,2,3-trimethylpentane 4.09 −52.61 101.62 110 0.716 1.4030
6 2,2,4-trimethylpentane 3.13 −53.57 101.62 99 0.692 1.3915
7 2,3,3-trimethylpentane 4.52 −51.73 103.14 115 0.726 1.4075
8 2,3,4-trimethylpentane 4.32 −51.97 102.99 113 0.719 1.4042
9 2,3-dimethylhexane 4.23 −51.13 106.11 116 0.712 1.4011

10 2,4-dimethylhexane 2.80 −52.44 106.51 109 0.700 1.3929
11 2,5-dimethylhexane 2.50 −53.21 104.93 109 0.694 1.3925
12 3,3-dimethylhexane 3.17 −52.61 104.70 112 0.710 1.4001
13 3,4-dimethylhexane 4.14 −50.91 107.15 118 0.719 1.4041
14 2,2-dimethylhexane 2.56 −53.71 103.06 107 0.695 1.3935
15 3-ethylhexane 3.95 −50.40 109.51 119 0.714 1.4016
16 2-methylheptane 3.06 −51.50 108.81 118 0.698 1.3949
17 4-methylheptane 4.00 −50.69 108.35 118 0.705 1.3979
18 3-methylheptane 3.29 −50.82 110.32 119 0.706 1.3985

Respect to the results evaluation, the following characteristics and general trends
can be mentioned:

• When considering the process of multilinear fitting, in order to reproduce a value
of R2 greater than 0.8 using the CO, at least the first 12 PCs must be chosen. At
the contrary, if the SO approach is considered, only 4, 5 or 6 PCs must be used.
Of course, this result is a consequence of the additive properties of ther2

i para-
meters mentioned above and to the algorithm definition: the method is designed
to choose the vectors that contribute most to the value ofR2. But this is a first
warning: this shows that the CO is not optimal to carry out linear fittings and,
by extension, it is expected to be a bad choice to start a cross-validation process.

• Using the SO and less than 16 PCs, the relative standard deviation (sn,cv) never
overcomes the value of 0.1, irrespective to the studied property.

• If an optimal number of PCs is chosen, the statistical significance test parame-
ter (fcv) is less that 0.001 (significance level units) when the SO is considered.
With respect to the CO, the related values are substantially greater, in most cases
greater than 0.3 irrespective to the number of PCs. This behaviour is reproduced
in all the properties, except for the entropy.

• Perhaps one of the best parameters available to measure the predictive capability
is theq(2) coefficient [13]. It constitutes an estimation of the value of the squared
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Figure 1. Linear fitting and cross-validation results obtained for the studied family. The independent vari-
able is the number of principal components sorted by the canonical order. The dependent variables are:•R2

(square of the correlation coefficient for the multilinear fitting),� r2
cv (square of the correlation coefficient

resulting from the process of cross-validation),× fcv (level of statistical significance for the cross-validation
results, according to Fisher test) and� sn,cv (relative standard deviation for the process of cross-validation).

correlation coefficient related to the cross-validated data,r2
cv. This last parameter

has been computed in this work instead of the approximate one. When using the
CO, r2

cv achieves small values. The best value was 0.6 when the normal boiling
points were studied. Moreover, the result for 13 PCs is unstable. On the other
hand, when the SO is considered, the variable is especially stable for 3 proper-
ties (entropy, boiling point and free Gibbs energy). Also, the achieved numerical
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Figure 2. Linear fitting and cross-validation results obtained for the studied family. The independent vari-
able is the number of principal components sorted by the specific order determined by de text algorithm
and the respective property. For each graph, the eigenvectors are denoted by means of the numbering of the

canonical order. The dependent variables are the same of figure 1.

values are quite good: 0.8 or more. For the other three properties, the obtained
values are not optimal for a linear treatment, but, in any case, they are much
better than the ones coming when the CO is considered.

From the previous considerations, it can be understood that the SO is most suitable
for data preprocessing and selection techniques when generating predictive models for
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Table 2
Predicted property values for the octane isomers using the technique of linear cross-validation
and the canonical ordering for the first 9 eigenvectors. The mean percentual errors were obtained

following the formulae = 100
18

18∑
i=1

∣∣∣Experimental value(i)−Computed value(i)
Experimental value(i)

∣∣∣.
�G◦f �H ◦f S◦ Tb ρ (g/ml) n

Molecule (Kcal/mol) (Kcal/mol) (Kcal/mol·K) (◦C)

1 1.53 −52.76 109.79 116.61 0.68 1.38
2 4.13 −52.55 101.71 107.73 0.71 1.40
3 3.54 −54.18 98.19 105.15 0.73 1.41
4 5.62 −50.49 103.61 119.64 0.75 1.42
5 5.16 −52.30 99.07 111.45 0.77 1.44
6 4.14 −53.08 99.87 107.66 0.76 1.43
7 4.72 −51.59 102.93 116.77 0.74 1.42
8 4.03 −51.35 106.02 113.91 0.70 1.39
9 3.68 −53.08 101.43 106.24 0.74 1.42

10 1.99 −54.44 102.56 102.99 0.70 1.40
11 3.68 −51.54 106.56 110.31 0.71 1.40
12 4.00 −51.74 104.87 113.10 0.77 1.43
13 3.18 −51.96 106.86 119.14 0.71 1.40
14 3.50 −50.78 109.76 118.53 0.69 1.39
15 4.34 −50.79 106.87 123.21 0.74 1.42
16 3.35 −51.66 107.30 116.15 0.69 1.39
17 3.34 −50.75 110.39 119.03 0.69 1.39
18 3.17 −50.98 110.15 113.95 0.66 1.37

Mean percentage error 22.83 2.34 2.53 3.91 4.00 1.26

a training family. Either if the data will entera posteriori in a linear or a non-linear
process, the criteria promoted here is better than the classical ones described by Kaiser
[10] or Cattell [11], which does not consider the molecular property. As an example, one
can consider the results concerning the enthalpy and the free energy: in reference [22]
using the first 9 PCs in the CO a small value ofR2 is obtained,sn,cv = 0.04 and very bad
values offcv = 0.82 andr2

cv = 0.003 are reproduced (see figure 1(a)). On the contrary,
as it is shown in figure 2(a), if 9 PCs are selected in the SO 1-12-2-4-13-6-10-9-5, then
all the parameters improve considerably (R2 = 0.92, sn,cv = 0.027,fcv = 0.00012 and
r2
cv = 0.61). Also, comparing the Gibbs free energies and looking to figures 1(f) and

2(f) similar enhancements are obtained using the SO 4-12-1-6-3-5-14-10-17 instead to
the canonical one:R2 changes from 0.75 to 0.96,sn,cv from 0.06 to 0.02,fcv from 0.17
to less than 0.00001 andr2

cv from 0.12 up to 0.85.
When comparing figures 1 and 2, if the CO is considered the insertion of a new PC

in the processes of cross-validation introduces instability among the dependent parame-
ters. On the contrary, when the SO is used, the tendency to the uniformity is achieved.
A paradigmatic example of this behaviour is found for ther2

cv coefficient associated to
the boiling point property.
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Table 3
Predicted property values for the octane isomers using the technique of linear cross-validation
and the specific ordering of 9 eigenvectors for every property. The mean percentual errors were

obtained using the same formula appearing in table 2.

�G◦f �H ◦f S◦ Tb ρ (g/ml) n

Molecule (Kcal/mol) (Kcal/mol) (Kcal/mol·K) (◦C)

1 3.89 −48.39 116.53 124.56 0.71 1.40
2 4.83 −53.23 96.46 105.32 0.76 1.43
3 5.22 −52.13 102.75 108.66 0.73 1.40
4 4.77 −51.38 103.38 118.31 0.73 1.41
5 3.93 −52.82 102.27 109.74 0.69 1.38
6 2.74 −53.72 103.23 105.49 0.70 1.40
7 4.46 −51.29 104.83 119.10 0.75 1.42
8 4.34 −52.67 100.09 111.67 0.75 1.41
9 4.57 −51.70 106.61 122.26 0.70 1.39

10 2.89 −52.44 108.32 110.63 0.70 1.39
11 2.44 −52.73 102.85 108.00 0.67 1.38
12 3.67 −52.13 104.28 109.13 0.71 1.41
13 4.04 −50.88 106.47 109.20 0.72 1.41
14 2.88 −53.74 106.35 113.55 0.70 1.40
15 3.63 −52.27 107.10 120.84 0.72 1.39
16 3.63 −51.27 105.65 113.72 0.70 1.39
17 3.74 −49.87 108.68 120.30 0.70 1.40
18 2.55 −51.94 110.13 117.36 0.71 1.40

Mean percentage error 7.12 1.19 1.70 2.91 1.81 0.70

Tables 2 and 3 contain the estimated property values for every property and when
9 PCs are chosen in both, the specific and canonical orders. The quality of the results
has to be extracted form the comparison with the data contained in table 1: the rows of
percentage errors in tables 2 and 3 claim that the SO is, in this sense, better than the CO.

Finally, some words of caution must be mentioned. For every studied property in
this work, the number of optimal descriptors has to be considered high. The authors
believe that this characteristic arises from the fact that an isomeric family was studied.
Results concerning other families and the use of new descriptors, as the quantum topo-
logical indices [27], will be published elsewhere.

5. Conclusions and expectatives

Many of the numerical values reported here relate to the linear cross-validation
technique. In this way, the present approach is well suited to measure the predictive ca-
pabilities of the proposed methodology. The observed general trends rely in the fact that,
for every property, there exists an optimal PCs set. Several numerical results showed the
benefits to use a property-oriented vector classification. Thus, the methodology over-
comes the intention of the classical PCA and it is closer to the technique of Partial
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Least Squares. Actual studies in our laboratory are carried out in order to compare both
property-dependent methodologies.
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Appendix: Quantum similarity matrices and indices

The cornerstone of the field of the quantum (molecular) similarity theory [16–21]
consists on measuring in some way the similarities between the density functions of
the molecules. It is expected that the numerical similarities and differences between
density functions can be translated to similarities and differences among the properties.
For every pair of molecules,A andB, with respective wavefunctions�A and�B , it
its possible to obtain the related first order density functions,ρA and ρB . Then, an
estimation of the similarities between the electronic distributions ofA andB can be
obtained from the mathematical Euclidean distance between the functionsρA andρB ,
which is defined as the norm of the difference of the two density functions:

d2
AB =

∫ ∣∣ρA − ρB

∣∣2dτ � 0. (A.1)

Then,

d2
AB =

∫
ρ2
A dτ +

∫
ρ2
B dτ − 2

∫
ρAρB dτ ,

and because only the last term of the previous equation is sensible to the relative mole-
cular spatial positions, it is common to use, as a measure of molecular similarity of the
two molecules the term

ZAB = max

(∫
ρAρB dτ

)
, (A.2)

which is obtained by means of the integral maximisation with respect to the relative
molecular arrangements.

The most known quantum similarity index is due to Carbó [16]. The index related
to a pair of molecules is defined as
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Table 4
Molecular quantum similarity measures and indices attached to the family of the octane isomers. In the
superior triangle, Carbó indices are shown and in the inferior one and in the diagonal the similarity measures

are tabulated. The molecular numbering is the same as the one appearing in table 1.

1 2 3 4 5 6 7 8 9

445.512 .313 .248 .406 .343 .260 .475 .399 .354
139.191 444.817 .619 .635 .727 .708 .650 .615 .561
110.381 275.313 445.012 .646 .587 .570 .613 .649 .468
180.629 282.620 287.303 445.040 .620 .561 .631 .628 .547
152.807 323.691 261.066 275.850 445.230 .598 .674 .552 .478
115.822 315.076 253.577 249.657 266.370 445.121 .585 .736 .646
211.578 289.205 272.924 280.645 300.002 260.272 445.103 .627 .468
177.425 273.744 288.541 279.204 245.647 327.540 278.869 444.728 .368
157.540 249.846 208.232 243.773 212.699 287.562 208.591 163.883 445.474
142.895 249.958 236.620 210.205 231.400 262.035 247.175 222.517 182.258
121.139 234.660 234.231 183.144 223.199 238.299 257.399 286.690 183.046
179.928 271.417 246.699 254.791 243.127 248.583 250.185 222.842 221.721
165.024 232.937 196.821 233.750 221.433 181.569 218.631 219.446 321.338
132.308 179.458 212.929 217.804 167.695 164.940 193.429 169.452 254.961
239.505 223.991 177.188 250.998 185.954 169.572 208.257 203.172 250.304
118.571 161.991 189.378 206.180 159.577 130.136 172.481 154.770 271.448
159.419 179.850 225.034 228.891 205.070 141.558 204.042 193.222 236.919
200.692 168.737 167.618 229.302 161.023 246.277 197.263 189.195 183.885

10 11 12 13 14 15 16 17 18

.321 .272 .404 .370 .297 .538 .266 .358 .450

.561 .527 .610 .523 .403 .503 .364 .404 .379

.531 .526 .554 .442 .478 .398 .425 .505 .376

.472 .411 .572 .525 .489 .564 .463 .514 .515

.519 .501 .546 .497 .377 .418 .358 .460 .362

.588 .535 .558 .408 .370 .381 .292 .318 .553

.555 .578 .562 .491 .434 .468 .387 .458 .443

.500 .644 .501 .493 .381 .456 .348 .434 .425

.409 .411 .498 .721 .572 .562 .609 .532 .413
445.854 .676 .613 .502 .502 .413 .400 .530 .466
301.348 445.755 .410 .485 .419 .548 .436 .409 .332
273.330 182.862 445.284 .519 .477 .648 .436 .511 .622
223.906 216.049 231.337 445.526 .554 .496 .654 .492 .445
223.851 186.519 212.296 246.983 445.508 .427 .642 .582 .478
183.975 244.319 288.726 221.051 190.174 445.453 .351 .625 .560
178.506 194.445 194.254 291.511 285.951 156.478 445.624 .506 .407
236.220 182.224 227.622 219.050 259.299 278.523 225.516 445.485 .697
207.881 148.145 276.827 198.171 212.822 249.413 181.308 310.494 445.508

RAB = ZAB

(ZAA · ZBB)1/2
. (A.3)

This parameter has the property to be normalised between the values 0 (moleculeA

totally dissimilar to moleculeB) and 1 (moleculesA andB identical).
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In this way, when studying a set ofn molecules, a symmetricn × n similarity
matrix is obtained when collecting the similarity measures or the indices between all
the molecular pairs. Theith column can be taken as a theoretical molecular descriptor
vector.

Despite the basic foundation described here, there is no a unique way to extract
selectively from the density functions information related to the molecular properties.
Usually, the linear techniques seem to be adequate to obtain models with predictable
capabilities.

The calculations relative to the 18 octane isomers where performed with the
MOPAC 7.0 [28] program under the PM3 approach and global geometry optimisa-
tion. The precision parameters where set to the best available ones (SCFCRT= 10−25,
GNORM= 0.0). The mean CPU timing for every molecule was 300 s in a personal
computer Pentium Aptiva at 100 MHz. The similarity integral computations and optimi-
sation where performed with the MOLSIMIL-93 [29,30] program, which uses as input
some of the MOPAC program data output. The total CPU time consumed was 1 hour.
The obtained similarity measures and indices are shown in table 4.

More details related to the computation of the quantum similarity matrix related to
the studied molecular family are described in a previous article [22].
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